Optimal variance estimation based on lagged second-order difference in nonparametric regression
نویسندگان
چکیده
Differenced estimators of variance bypass the estimation of regression function and thus are simple to calculate. However, there exist two problems: most differenced estimators do not achieve the asymptotic optimal rate for the mean square error; for finite samples the estimation bias is also important and not further considered. In this paper, we estimate the variance as the intercept in a linear regression with the lagged Gasser-type variance estimator as dependent variable. For the equidistant design, our estimator is not only n1/2-consistent and asymptotically normal, but also achieves the optimal bound in terms of estimation variance with less asymptotic bias. Simulation studies show that our estimator has less mean square error than some existing differenced estimators, especially in the cases of immense oscillation of regression function and small-sized sample.
منابع مشابه
Variance function estimation in multivariate nonparametric regression with fixed design
Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established in the iid Gaussian case. Our work uses the approach that generalizes the one used in [A. Munk, Bissantz, T. Wagner, G. Freitag, On difference based variance estimation in nonparametric regression when the covariate is high dimensional, J. R. Stat. Soc. B 67 (Pa...
متن کاملVariance estimation in nonparametric regression via the difference sequence method ( short title :
Consider the standard Gaussian nonparametric regression problem. The observations are (xi, yi) where and where ~i are iid with finite fourth moment p4 < oo. This article presents a class of difference-based kernel estimators for the variance *AMS 2000 Subject Classification 62G08, 62G20 t ~ e ~ w o r d s and Phrases: Nonparametric regression, Variance estimation, Asymptotic minimaxity he work o...
متن کاملVariance Function Estimation in Multivariate Nonparametric Regression
Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established. Our work uses the approach that generalizes the one used in Munk et al (2005) for the constant variance case. As is the case when the number of dimensions d = 1, and very much contrary to the common practice, it is often not desirable to base the estimator of t...
متن کاملVariance estimation in nonparametric regression via the difference sequence method (short title: Sequence-based variance estimation)
Consider a Gaussian nonparametric regression problem having both an unknown mean function and unknown variance function. This article presents a class of difference-based kernel estimators for the variance function. Optimal convergence rates that are uniform over broad functional classes and bandwidths are fully characterized, and asymptotic normality is also established. We also show that for ...
متن کاملEstimating the error variance in nonparametric regression by a covariate-matched U-statistic
For nonparametric regression models with fixed and random design, two classes of estimators for the error variance have been introduced: second sample moments based on residuals from a nonparametric fit, and difference-based estimators. The former are asymptotically optimal but require estimating the regression function; the latter are simple but have larger asymptotic variance. For nonparametr...
متن کامل